Review of Algebra

Arithmetic Operations

a+b=b+a	ab = ba	Commutative Law
(a+b) + c = a + (b+c)	(ab)c = a(bc)	Associative Law
a(b+c) = ab + bc		Distributive Law

Examples: (a) (3xy)(-4x) =

(b) $1 + 4x^2 - 3x(x - 2) =$

Applying the Distributive Law three times gives

$$(a+b)(c+d) = (a+b)c + (a+b)d = ac + bc + ad + bd$$

Each term in one factor multiplies each term in the other factor and the products are added. Some common special cases are:

$$(a+b)^2 = a^2 + 2ab + b^2$$
 $(a-b)^2 = a^2 - 2ab + b^2$

Examples: (a) (2x+1)(3x-5) =

 $(b) (x+5)^2 =$

(c) (x+3)(x-2)(4x+1) =

Fractions

The *inverse* of a number a is the number, denoted a^{-1} , such that $a \cdot a^{-1} = 1$. A *fraction* $\frac{a}{b}$ is just another way to write $a \cdot b^{-1}$: $a \cdot b^{-1} = \frac{a}{b}$. In particular,

$$\frac{1}{a} = a^{-1}$$
 $\frac{a}{a} = a \cdot a^{-1} = 1$

Since $(ab)(a^{-1}b^{-1}) = (a \cdot a^{-1})(b \cdot b^{-1}) = 1$, we see that $(ab)^{-1} = a^{-1}b^{-1}$.

To multiply two fractions, just multiply the numerators and the denominators:

$$\frac{a}{b} \cdot \frac{c}{d} = (a \cdot b^{-1})(c \cdot d^{-1}) = (ac)(b^{-1}d^{-1}) = (ac)(bd)^{-1} = \frac{ac}{bd}$$

Note that $\frac{-a}{b} = -\frac{a}{b} = \frac{a}{-b}$.

To add two fractions with the same denominator, we use the Distributive Law:

$$\frac{a}{b} + \frac{c}{b} = a \cdot b^{-1} + c \cdot b^{-1} = (a+c)b^{-1} = \frac{a+c}{b}$$

Remember: $\frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}$. To add two fractions with different denominators, first find a common denominator:

$$\frac{a}{b} + \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{d} + \frac{c}{d} \cdot \frac{b}{b} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad+bc}{bd}$$

This process is often called *cross-multiplication*. **To divide two fractions:**

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{\frac{a}{b}}{\frac{c}{d}} \cdot \frac{\frac{d}{c}}{\frac{d}{c}} = \frac{\frac{ad}{bc}}{\frac{cd}{cd}} = \frac{\frac{ad}{bc}}{1} = \frac{ad}{bc}$$

This amounts to inverting the denominator and multiplying:

$$\boxed{\frac{\frac{a}{\overline{b}}}{\frac{c}{\overline{d}}} = \frac{a}{\overline{b}} \cdot \frac{d}{\overline{c}} = \frac{ad}{bc}}$$

Examples: (a) $\frac{x+3}{x}$

$$(b) \ \frac{3}{x-1} + \frac{x}{x+2} =$$

$$(c) \ \frac{\frac{x}{y} + 1}{1 - \frac{y}{x}}$$

Factoring

Reversing the process of the Distributive Law is called *factoring*. For example, $3x^2 - 6x = 3x(x - 2)$. To factor a quadratic of the form $x^2 + bx + c$, we note that

$$(x+r)(x+s) = x^2 + (r+s)x + rs$$

so we need to find numbers r and s, whose sum r + s = b and whose product rs = c. Examples: (a) Factor $x^2 + 3x + 2$.

(b) Factor $x^2 + 5x - 24$.

Some common expression can be factored easily:

$$a^{2} - b^{2} = (a - b)(a + b)$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

Examples: Factor the following polynomials: (a) $x^2 - 10x + 25$

(b) $9x^2 - 16$

 $(c) x^3 + 8$

(d) Simplify $\frac{x^2-9}{x^2+x-12}$

To factor higher degree polynomials, it is useful to remember the following fact about a polynomial p(x):

If
$$p(a) = 0$$
, then $(x - a)$ is a factor of $p(x)$.

Example: To factor $p(x) = x^3 - 13x + 12$ we first note that $p(1) = (1)^3 - 13(1) + 12 = 0$. Therefore p(x) = (x - 1)q(x). To find q(x) we use *long division*.

Completing the Square

In order to graph $y = ax^2 + bx + c$ or solve for its roots, the technique of *completing the square* is very useful. The idea is to **rewrite** y as $y = a(x+p)^2 + q$:

$$ax^{2} + bx + c = a(x + p)^{2} + q = a(x^{2} + 2px + p^{2}) + q = ax^{2} + 2apx + ap^{2} + q$$

By equating the coefficients, we find that

$$b = 2ap, \qquad c = ap^2 + q$$

Solving these equations gives $p = \frac{b}{2a}$ and $q = c - ap^2 = c - a\frac{b^2}{4a^2} = c - \frac{b^2}{4a}$ so that

$$ax^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2} + \left(c - \frac{b^{2}}{4a}\right)$$

These formulas need not be memorized. The steps taken above are simple enough to carry out for any given example. We may, however, derive the *Quadratic Formula* from this expression. To solve $ax^2 + bx + c = 0$ we isolate the square term in the above expression:

$$a\left(x+\frac{b}{2a}\right)^{2} + \left(c-\frac{b^{2}}{4a}\right) = 0 \iff a\left(x+\frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a} - c = \frac{b^{2}-4ac}{4a} \iff \left(x+\frac{b}{2a}\right)^{2} = \frac{b^{2}-4ac}{4a^{2}}$$

Then we take the square root to obtain the final formula for the roots:

$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}} \Longleftrightarrow x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Quadratic Fomula. The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Example: Let $y = -x^2 + 4x - 3$. To complete the square, we solve for p and q by equating coefficients:

$$-x^{2} + 4x - 3 = -(x + p)^{2} + q = -x^{2} - 2px - p^{2} + q$$

The graph of an equation of the form $y = -(x+p)^2 + q$ is that of an inverted parabola (opening down) with vertex at the point (-p, q).

Sketch the graph of the above parabola and include the points where it crosses the x-axis:

Binomial Expansion

When expanding binomial expressions of the form $(a + b)^n$ a pattern emerges.

$$\begin{array}{rcl} (a+b)^{0} &=& 1\\ (a+b)^{1} &=& a+b\\ (a+b)^{2} &=& a^{2}+2ab+b^{2}\\ (a+b)^{3} &=& a^{3}+3a^{2}b+3ab^{2}+b^{3}\\ (a+b)^{4} &=& a^{4}+4a^{3}b+6a^{2}b^{2}+4ab^{3}+b^{4}\\ (a+b)^{5} &=& a^{5}+5a^{4}b+10a^{3}b^{2}+10a^{2}b^{3}+5ab^{4}+b^{5} \end{array}$$

The exponents on a start at n and decrease to 0, while the exponents on b start at 0 and increase to n. The coefficients follow a pattern called *Pascal's Triangle*.

The number on any line is the sum of the two numbers above it on the previous line.

Examples: $(a) (x-2)^4 = .$

 $(b) (3x+1)^5 =$

 $(a) (x+h)^3 = .$

Radicals

The symbol $\sqrt{}$ means "the positive square root of." Thus,

$$x = \sqrt{a}$$
 means $x^2 = a$ and $x \ge 0$

Note that $a \ge 0$ since it equals a square of a number which is always non-negative.

Square roots work well with products and quotients,

$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$
 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

but not with sums or differences,

$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$$
 $\sqrt{a-b} \neq \sqrt{a} - \sqrt{b}$

For example $\sqrt{9+16} = \sqrt{25} = 5$, not $\sqrt{9} + \sqrt{16} = 3 + 4 = 7$. **Examples:** (a) Sinplify $\frac{\sqrt{50}}{\sqrt{2}}$

(b) $\sqrt{x^2y} = .$

Note that $\sqrt{x^2} = |x|$ because $\sqrt{\ }$ indicates the *positive* square root.

Examples: (a) Simplify $\sqrt{(-10)^2}$

(b) If x < 0, is $x = \sqrt{x^2}$?

(c) Simplify $\sqrt{x^3}$

In general,

if n is a positive integer, $x = \sqrt[n]{a}$ means $x^n = a$. If n is even then $a \ge 0$ and $x \ge 0$.

The same rules hold for these more general roots.

$$\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b} \qquad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Examples: (a) $\sqrt[3]{-64} = .$

(b) $\sqrt[5]{x^6} = .$

(c) If x < 0, is $x = \sqrt[3]{x^3}$?

To "rationalize" a numerator or denominator that contains an expression such as $\sqrt{a} - \sqrt{b}$, we multiply the the numerator and denominator by the "conjugate" radical $\sqrt{a} + \sqrt{b}$. Then we can take advantage of the formula for the difference of two squares

$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) = (\sqrt{a})^2 - (\sqrt{b})^2 = a - b$$

Example: $\frac{\sqrt{x+5}-3}{x-4} =$

Exponents

For any positive integer n, a^n is shorthand for multiplying a by itself n times. By convention, we let $a^0 = 1$ and $a^{-n} = \frac{1}{a^n}$ so that exponents are defined for all integers. We define fractional exponents by the rules $a^{1/n} = \sqrt[n]{a}$ and $a^{m/n} = (\sqrt[n]{a})^m$. With these conventions, the following rules are always valid. **Laws of Exponents.** For any rational numbers r and s

$$a^{r} \cdot a^{s} = a^{r+s}$$
 $\frac{a^{r}}{a^{s}} = a^{r-s}$ $(a^{r})^{s} = a^{rs}$ $(ab)^{r} = a^{r}b^{r}$ $\left(\frac{a}{b}\right)^{r} = \frac{a^{r}}{b^{r}}$

Notice that there are no similar rules involving addition or subtraction: $(a + b)^r \neq a^r + b^r$.

Examples: (a) $3^7 \times 27^4$

$$(b) \; \frac{x^{-2}-y^{-2}}{x^{-1}+y^{-1}}$$

$$(c) 4^{3/2} = .$$

$$(d) \ \frac{1}{\sqrt[5]{x^3}} =$$

$$(e) \left(\frac{x}{y}\right)^{-2} \left(\frac{y^2 x}{z}\right)^3$$

Miscellaneous

When adding two rational expressions $\frac{a}{b}$ and $\frac{c}{d}$, we can create the common denominator bd and add to get

$$\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad + bc}{bd}$$

If b and d have common factors, we can sometimes benefit from finding a "smaller" common denominator k for which both b and d divide k.

Examples: (a)
$$\frac{(x-1)}{x^2-4} + \frac{(x+1)}{(x-2)(x+3)}$$

(b)
$$\frac{(x-2)}{(x-1)^2(x-3)} + \frac{(x+1)}{(x-1)(x+3)}$$

$$(c) \ \frac{5}{6} + \frac{3}{10}$$

When calculating limits, we often need to write examples such as those shown below as a single root:

Examples: (a) For
$$x > 0$$
, $\frac{\sqrt{x^2 + x - 1}}{x} =$

(b) For
$$x < 0$$
, $\frac{\sqrt{x^2 + x - 1}}{x} =$

(c) For
$$x < 0$$
, $\frac{\sqrt[3]{x^3 + x^2 - 1}}{x} =$