Review of Algebra

Arithmetic Operations

$$
\begin{array}{rlrl}
a+b & =b+a & a b & =b a \\
(a+b)+c & =a+(b+c) & & \text { Commutative Law } \\
a(b+c) & =a b+b c & & =a(b c) \\
& & \text { Associative Law } \\
& & & \text { Distributive Law }
\end{array}
$$

Examples: $(a)(3 x y)(-4 x)=$
(b) $1+4 x^{2}-3 x(x-2)=$

Applying the Distributive Law three times gives

$$
(a+b)(c+d)=(a+b) c+(a+b) d=a c+b c+a d+b d
$$

Each term in one factor multiplies each term in the other factor and the products are added. Some common special cases are:

$$
(a+b)^{2}=a^{2}+2 a b+b^{2} \quad(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

Examples: $(a)(2 x+1)(3 x-5)=$
(b) $(x+5)^{2}=$
(c) $(x+3)(x-2)(4 x+1)=$

Fractions

The inverse of a number a is the number, denoted a^{-1}, such that $a \cdot a^{-1}=1$.
A fraction $\frac{a}{b}$ is just another way to write $a \cdot b^{-1}: a \cdot b^{-1}=\frac{a}{b}$.
In particular,

$$
\frac{1}{a}=a^{-1} \quad \frac{a}{a}=a \cdot a^{-1}=1
$$

Since $(a b)\left(a^{-1} b^{-1}\right)=\left(a \cdot a^{-1}\right)\left(b \cdot b^{-1}\right)=1$, we see that $(a b)^{-1}=a^{-1} b^{-1}$.
To multiply two fractions, just multiply the numerators and the denominators:

$$
\frac{a}{b} \cdot \frac{c}{d}=\left(a \cdot b^{-1}\right)\left(c \cdot d^{-1}\right)=(a c)\left(b^{-1} d^{-1}\right)=(a c)(b d)^{-1}=\frac{a c}{b d}
$$

Note that $\frac{-a}{b}=-\frac{a}{b}=\frac{a}{-b}$.
To add two fractions with the same denominator, we use the Distributive Law:

$$
\frac{a}{b}+\frac{c}{b}=a \cdot b^{-1}+c \cdot b^{-1}=(a+c) b^{-1}=\frac{a+c}{b}
$$

Remember: $\frac{a}{b+c} \neq \frac{a}{b}+\frac{a}{c}$.
To add two fractions with different denominators, first find a common denominator:

$$
\frac{a}{b}+\frac{c}{d}=\frac{a}{b} \cdot \frac{d}{d}+\frac{c}{d} \cdot \frac{b}{b}=\frac{a d}{b d}+\frac{b c}{b d}=\frac{a d+b c}{b d}
$$

This process is often called cross-multiplication.
To divide two fractions:

$$
\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{\frac{a}{b}}{\frac{c}{d}} \cdot \frac{\frac{d}{c}}{\frac{d}{c}}=\frac{\frac{a d}{b c}}{\frac{c d}{c d}}=\frac{\frac{a d}{b c}}{1}=\frac{a d}{b c}
$$

This amounts to inverting the denominator and multiplying:

$$
\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}
$$

Examples: (a) $\frac{x+3}{x}$
(b) $\frac{3}{x-1}+\frac{x}{x+2}=$
(c) $\frac{\frac{x}{y}+1}{1-\frac{y}{x}}$

Factoring

Reversing the process of the Distributive Law is called factoring.
For example, $3 x^{2}-6 x=3 x(x-2)$.
To factor a quadratic of the form $x^{2}+b x+c$, we note that

$$
(x+r)(x+s)=x^{2}+(r+s) x+r s
$$

so we need to find numbers r and s, whose sum $r+s=b$ and whose product $r s=c$.
Examples: (a) Factor $x^{2}+3 x+2$.
(b) Factor $x^{2}+5 x-24$.

Some common expression can be factored easily:

$$
\begin{array}{rr}
a^{2}-b^{2}= & (a-b)(a+b) \\
a^{3}-b^{3}= & (a-b)\left(a^{2}+a b+b^{2}\right) \\
a^{3}+b^{3}= & (a+b)\left(a^{2}-a b+b^{2}\right)
\end{array}
$$

Examples: Factor the following polynomials:
(a) $x^{2}-10 x+25$
(b) $9 x^{2}-16$
(c) $x^{3}+8$
(d) Simplify $\frac{x^{2}-9}{x^{2}+x-12}$

To factor higher degree polynomials, it is useful to remember the following fact about a polynomial $p(x)$:

$$
\text { If } p(a)=0 \text {, then }(x-a) \text { is a factor of } p(x)
$$

Example: To factor $p(x)=x^{3}-13 x+12$ we first note that $p(1)=(1)^{3}-13(1)+12=0$. Therefore $p(x)=(x-1) q(x)$. To find $q(x)$ we use long division.

Completing the Square

In order to graph $y=a x^{2}+b x+c$ or solve for its roots, the technique of completing the square is very useful. The idea is to rewrite y as $y=a(x+p)^{2}+q$:

$$
a x^{2}+b x+c=a(x+p)^{2}+q=a\left(x^{2}+2 p x+p^{2}\right)+q=a x^{2}+2 a p x+a p^{2}+q
$$

By equating the coefficients, we find that

$$
b=2 a p, \quad c=a p^{2}+q
$$

Solving these equations gives $p=\frac{b}{2 a}$ and $q=c-a p^{2}=c-a \frac{b^{2}}{4 a^{2}}=c-\frac{b^{2}}{4 a}$ so that

$$
a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}+\left(c-\frac{b^{2}}{4 a}\right)
$$

These formulas need not be memorized. The steps taken above are simple enough to carry out for any given example. We may, however, derive the Quadratic Formula from this expression. To solve $a x^{2}+b x+c=0$ we isolate the square term in the above expression:

$$
a\left(x+\frac{b}{2 a}\right)^{2}+\left(c-\frac{b^{2}}{4 a}\right)=0 \Longleftrightarrow a\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a}-c=\frac{b^{2}-4 a c}{4 a} \Longleftrightarrow\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}
$$

Then we take the square root to obtain the final formula for the roots:

$$
x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \Longleftrightarrow x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Quadratic Fomula. The roots of $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Example: Let $y=-x^{2}+4 x-3$. To complete the square, we solve for p and q by equating coefficients:

$$
-x^{2}+4 x-3=-(x+p)^{2}+q=-x^{2}-2 p x-p^{2}+q
$$

The graph of an equation of the form $y=-(x+p)^{2}+q$ is that of an inverted parabola (opening down) with vertex at the point $(-p, q)$.
Sketch the graph of the above parabola and include the points where it crosses the x-axis:

Binomial Expansion

When expanding binomial expressions of the form $(a+b)^{n}$ a pattern emerges.

$$
\begin{array}{ccc}
(a+b)^{0} & = & 1 \\
(a+b)^{1} & = & a+b \\
(a+b)^{2} & = & a^{2}+2 a b+b^{2} \\
(a+b)^{3} & = & a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
(a+b)^{4} & = & a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
(a+b)^{5} & = & a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
\end{array}
$$

The exponents on a start at n and decrease to 0 , while the exponents on b start at 0 and increase to n. The coefficients follow a pattern called Pascal's Triangle.

The number on any line is the sum of the two numbers above it on the previous line.
Examples: $(a)(x-2)^{4}=$.
(b) $(3 x+1)^{5}=$
(a) $(x+h)^{3}=$.

Radicals

The symbol $\sqrt{ }$ means "the positive square root of." Thus,

$$
x=\sqrt{a} \quad \text { means } \quad x^{2}=a \quad \text { and } \quad x \geq 0
$$

Note that $a \geq 0$ since it equals a square of a number which is always non-negative.
Square roots work well with products and quotients,

$$
\sqrt{a b}=\sqrt{a} \sqrt{b} \quad \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

but not with sums or differences,

$$
\sqrt{a+b} \neq \sqrt{a}+\sqrt{b} \quad \sqrt{a-b} \neq \sqrt{a}-\sqrt{b}
$$

For example $\sqrt{9+16}=\sqrt{25}=5$, not $\sqrt{9}+\sqrt{16}=3+4=7$.
Examples: (a) Sinplify $\frac{\sqrt{50}}{\sqrt{2}}$
(b) $\sqrt{x^{2} y}=$.

Note that $\sqrt{x^{2}}=|x|$ because $\sqrt{ }$ indicates the positive square root.

Examples: (a) Sinplify $\sqrt{(-10)^{2}}$
(b) If $x<0$, is $x=\sqrt{x^{2}}$?
(c) Sinplify $\sqrt{x^{3}}$

In general,
if n is a positive integer, $x=\sqrt[n]{a}$ means $x^{n}=a$. If n is even then $a \geq 0$ and $x \geq 0$.
The same rules hold for these more general roots.

$$
\sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b} \quad \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
$$

Examples: (a) $\sqrt[3]{-64}=$.
(b) $\sqrt[5]{x^{6}}=$.
(c) If $x<0$, is $x=\sqrt[3]{x^{3}}$?

To "rationalize" a numerator or denominator that contains an expression such as $\sqrt{a}-\sqrt{b}$, we multiply the the numerator and denominator by the "conjugate" radical $\sqrt{a}+\sqrt{b}$. Then we can take advantage of the formula for the difference of two squares

$$
(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})=(\sqrt{a})^{2}-(\sqrt{b})^{2}=a-b
$$

Example: $\frac{\sqrt{x+5}-3}{x-4}=$

Exponents

For any positive integer n, a^{n} is shorthand for multiplying a by itself n times. By convention, we let $a^{0}=1$ and $a^{-n}=\frac{1}{a^{n}}$ so that exponents are defined for all integers. We define fractional exponents by the rules $a^{1 / n}=\sqrt[n]{a}$ and $a^{m / n}=(\sqrt[n]{a})^{m}$. With these conventions, the following rules are always valid. Laws of Exponents. For any rational numbers r and s

$$
a^{r} \cdot a^{s}=a^{r+s} \quad \frac{a^{r}}{a^{s}}=a^{r-s} \quad\left(a^{r}\right)^{s}=a^{r s} \quad(a b)^{r}=a^{r} b^{r} \quad\left(\frac{a}{b}\right)^{r}=\frac{a^{r}}{b^{r}}
$$

Notice that there are no similar rules involving addition or subtraction: $(a+b)^{r} \neq a^{r}+b^{r}$.
Examples: (a) $3^{7} \times 27^{4}$
(b) $\frac{x^{-2}-y^{-2}}{x^{-1}+y^{-1}}$
(c) $4^{3 / 2}=$.
(d) $\frac{1}{\sqrt[5]{x^{3}}}=$
(e) $\left(\frac{x}{y}\right)^{-2}\left(\frac{y^{2} x}{z}\right)^{3}$

Miscellaneous

When adding two rational expressions $\frac{a}{b}$ and $\frac{c}{d}$, we can create the common denominator $b d$ and add to get

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d}{b d}+\frac{b c}{b d}=\frac{a d+b c}{b d}
$$

If b and d have common factors, we can sometimes benefit from finding a "smaller" common denominator k for which both b and d divide k.

Examples: $(a) \frac{(x-1)}{x^{2}-4}+\frac{(x+1)}{(x-2)(x+3)}$
(b) $\frac{(x-2)}{(x-1)^{2}(x-3)}+\frac{(x+1)}{(x-1)(x+3)}$
(c) $\frac{5}{6}+\frac{3}{10}$

When calculating limits, we often need to write examples such as those shown below as a single root:
Examples: (a) For $x>0, \frac{\sqrt{x^{2}+x-1}}{x}=$
(b) For $x<0, \frac{\sqrt{x^{2}+x-1}}{x}=$
(c) For $x<0, \frac{\sqrt[3]{x^{3}+x^{2}-1}}{x}=$

